2. Vladimir V. Okrepilov

Socio-Economic System Modeling Using the Tools of the Economics of Quality

  • Contact details
  • Abstract
  • References

Vladimir V. Okrepilov

President of “Test-S.-Petersburg” Ltd., Doctor of Economics, Professor, Academician of RAS, Honorary Professor of Saint Petersburg university of Management Technologies and Economics

Kurlyandskaya Str. 1, St. Petersburg, Russian Federation, 190103

This study examines the experience of socioeconomic modeling and explores the feasibility of using the elements of the economics of quality for the purposes of such modeling.
Aim. This study assesses the possibility of managing the development of socio-economic systems using modeling techniques based on the elements of the economics of quality.
Tasks. In the study, the authors analyze the current state of the theory and practice of life quality modeling within the framework of the socio-economic system and evaluate the efficiency of socio-economic system modeling using the tools of the economics of quality.
Methods. The socio-economic system and the elements of the economics of quality are examined from various perspectives using general scientific methods of cognition. The methods for the assessment of the quality of life are presented as an important factor of socioeconomic system development.
Results. The available Russian and foreign experiences in socio-economic system modeling are examined, and major development trends in this field are identified. The feasibility of using the elements of the economics of quality in socio-economic system modeling (including agent-oriented modeling) is substantiated, and the corresponding approaches are determined. A basis for compiling a list of life quality indicators is provided. A model simulating information processes in socio-economic systems is proposed.
Conclusion. The study’s results can be used to improve the quality of forecasting and management of the development of socio-economic systems. Agent-oriented modeling should help select the optimal strategy for system data development, which would increase the economic stability and quality of life.

Keywords:socio-economic system, tools of the economics of quality, modeling, development management, life quality indicators


  1. Bogdanov A. A. Tektologiya. (Vseobshchaya organizatsionnaya nauka). V 2-kh kn. [Tectology. (General organizational science). In 2 books]. Moscow: Ekonomika, 1989, Book 1. 304 p.
  2. Grigor’eva K. V. Komp’yuternoe modelirovanie ustoychivogo sotsial’no-ekonomicheskogo razvitiya Rossii, Kazakhstana i Yaponii [Computer modeling of sustainable social and economic development of Russia, Kazakhstan and Japan]. Ustoychivoe innovatsionnoe razvitie: proektirovanie i upravlenie, 2015, vol. 11, no. 1 (26), pp. 55–67.
  3. Druzhinin A. G., Ugol’nitskiy G. A. Ustoychivoe razvitie territorial’nykh sotsial’no-ekonomicheskikh sistem: teoriya i praktika modelirovaniya [Sustainable development of territorial socio-economic systems: Theory and practice of modeling]. Moscow: Vuzovskaya kniga Publ., 2013. 224 p.
  4. Makarov V. L., Bakhtizin A. R., Vasenin V. A., Roganov V. A., Trifonov I. A. Sredstva superkomp’yuternykh sistem dlya raboty s agent-orientirovannymi modelyami [Capacities of supercomputer systems for working with agent-based models]. Programmnaya inzheneriya, 2011, no. 3, pp. 2–14.
  5. Merton R. K. Social theory and social structure. N.Y.: The Free Press Publ., 1968. 702 p. (Russ. ed.: Merton R.K. Sotsial’naya teoriya i sotsial’naya struktura. Moscow: AST Publ.; Khranitel’ Publ., 2006. 873 p.).
  6. Skopina I. V. Modelirovanie effektivnosti sotsial’noekonomicheskikh sistem [Simulation of the effectiveness of social and economic systems]. Upravlenie ekonomicheskimi sistemami, 2010, no. 4. Available at: http://uecs.ru/uecs-24-242010/item/242-2011-03-24-12-38-56.
  7. Starikov A. V., Kushcheva I. S. Ekonomiko-matematicheskoe i komp’yuternoe modelirovanie [Economicmathematical and computer modeling]. Voronezh: VSFA Publ., 2008. 132 p.
  8. Fedoseev V. V., Garmash A. N., Dayitbegov D. M. et al. Ekonomiko-matematicheskie metody i prikladnye modeli [Economic-mathematical methods and applied models]. Moscow: YuNITI Publ., 1999. 391 p.
  9. Firstov V.G., Rassamakhin D Yu. Tendentsii razvitiya metrologicheskogo obespecheniya tekhnologicheskoy ekonomiki [Trends in the development of metrological support of technological economy]. Fundamental’nye issledovaniya, 2014, no. 11-3, pp. 530–533.
  10. Shchekin G. V. Sotsial’naya teoriya i kadrovaya politika [Social theory and personnel policy]. Kiev: IAPM Publ., 2000. 576 p.
  11. Szczepański J. J. Elementarne pojęcia socjologii [Elementary concepts of sociology]. Warszawa: Państwowe Wydawnictwo Naukowe, 1967. 264 p. (Russ. ed.: Szczepański J. Elementarnye ponyatiya sotsiologii. Moscow: Progress Publ., 1969. 240 p.).
  12. Karypis G., Kumar V. METIS-unstructured graph partitioning and sparse matrix ordering system. Version 2.0. August 26, 1995. Available at: http://dm.kaist.ac.kr/kse625/resources/metis.pdf.
  13. Makarov V. L., Bakhtizin A. R., Sushko E. D., Vasenin V. A., Borisov V. A., Roganov V. A. Supercomputer technologies in social sciences: Agentoriented demographic models. Herald of the Russian Academy of Sciences, 2016, vol. 86, no. 3, pp. 248–257.
  14. Perez-Rodriguez G., Perez-Perez M., Fdez-Riverola F., Lourenco A. High performance computing for three-dimensional agent-based molecular models. Journal of Molecular Graphics and Modelling, 2016, vol. 68, pp. 68–77.
  15. Global Terrorism Index 2016: Measuring and understanding the impact of terrorism. Institute for Economics and Peace. Available at: http://economicsandpeace.org/wp-content/uploads/2016/11/Global-Terrorism-Index-2016.2.pdf.
  16. Xu Y., Cai W., Aydt H., Lees M., Zehe D. An asynchronous synchronization strategy for parallel largescale agent-based traffic simulations. Proc. 3rd ACM SIGSIM Conf. on Principles of Advanced Discrete Simulation. N.Y.: ACM, 2015, pp. 259–269.
  17. Zia K., Riener A., Farrahi K., Ferscha A. An agentbased parallel geo-simulation of urban mobility during city-scale evacuation. Simulation: Transactions of the Society for Modeling and Simulation International, 2013, vol. 89, no. 10, pp. 1184–1214.

Subscribe to electronic version of the article